You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

355 lines
13 KiB
C#

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

using System;
using System.Collections.Generic;
using System.Drawing;
#if !NETSTANDARD2_0
using System.Drawing.Drawing2D;
#endif
using System.Linq;
using System.Text;
namespace HslCommunication.Algorithms.Fourier
{
/// <summary>
/// 离散傅氏变换的快速算法处理的信号适合单周期信号数为2的N次方个支持变换及逆变换
/// </summary>
public class FFTHelper
{
/// <summary>
///
/// </summary>
/// <param name="xreal"></param>
/// <param name="ximag"></param>
/// <param name="n"></param>
private static void bitrp( double[] xreal, double[] ximag, int n )
{
// 位反转置换 Bit-reversal Permutation
int i, j, a, b, p;
for (i = 1, p = 0; i < n; i *= 2)
{
p++;
}
for (i = 0; i < n; i++)
{
a = i;
b = 0;
for (j = 0; j < p; j++)
{
b = b * 2 + a % 2;
a = a / 2;
}
if (b > i)
{
double t = xreal[i];
xreal[i] = xreal[b];
xreal[b] = t;
t = ximag[i];
ximag[i] = ximag[b];
ximag[b] = t;
}
}
}
/// <summary>
/// 快速傅立叶变换
/// </summary>
/// <param name="xreal">实数部分</param>
/// <returns>变换后的数组值</returns>
public static double[] FFT( double[] xreal )
{
return FFT( xreal, new double[xreal.Length] );
}
#if !NETSTANDARD2_0
/// <summary>
/// 获取FFT变换后的显示图形需要指定图形的相关参数
/// </summary>
/// <param name="xreal">实数部分的值</param>
/// <param name="width">图形的宽度</param>
/// <param name="heigh">图形的高度</param>
/// <param name="lineColor">线条颜色</param>
/// <returns>等待呈现的图形</returns>
/// <remarks>
/// <note type="warning">.net standrard2.0 下不支持。</note>
/// </remarks>
public static Bitmap GetFFTImage( double[] xreal,int width,int heigh ,Color lineColor)
{
double[] ximag = new double[xreal.Length]; // 构造虚对象
double[] array = FFT( xreal, ximag ); // 傅立叶变换
Bitmap bitmap = new Bitmap( width, heigh ); // 构造图形
Graphics g = Graphics.FromImage( bitmap );
g.SmoothingMode = SmoothingMode.HighQuality;
g.TextRenderingHint = System.Drawing.Text.TextRenderingHint.ClearTypeGridFit;
g.Clear( Color.White );
Pen pen_Line = new Pen( Color.DimGray, 1 ); // 定义画笔资源
Pen pen_Dash = new Pen( Color.LightGray, 1 );
Pen pen_Fourier = new Pen( lineColor, 1 );
pen_Dash.DashPattern = new float[2] { 5, 5 };
pen_Dash.DashStyle = DashStyle.Custom;
Font Font_Normal = SystemFonts.DefaultFont; // 定义字体资源
StringFormat sf_right = new StringFormat( );
sf_right.Alignment = StringAlignment.Far;
sf_right.LineAlignment = StringAlignment.Center;
StringFormat sf_center = new StringFormat( );
sf_center.LineAlignment = StringAlignment.Center;
sf_center.Alignment = StringAlignment.Center;
int padding_top = 20;
int padding_left = 49;
int padding_right = 49;
int padding_down = 30;
int sections = 9;
// g.DrawLine( pen_Line, new Point( padding_left, padding_top ), new Point( padding_left, heigh - padding_down ) );
float paint_height = heigh - padding_top - padding_down;
float paint_width = width - padding_left - padding_right;
if (array.Length > 1)
{
double Max = array.Max( );
double Min = array.Min( );
Max = Max - Min > 1 ? Max : Min + 1;
double Length = Max - Min;
//提取峰值
List<float> Peaks = new List<float>( );
if (array.Length >= 2)
{
if (array[0] > array[1])
{
Peaks.Add( 0 );
}
for (int i = 1; i < array.Length - 2; i++)
{
if (array[i - 1] < array[i] && array[i] > array[i + 1])
{
Peaks.Add( i );
}
}
if (array[array.Length - 1] > array[array.Length - 2])
{
Peaks.Add( array.Length - 1 );
}
}
//高400
for (int i = 0; i < sections; i++)
{
RectangleF rec = new RectangleF( -10f, (float)i / (sections - 1) * paint_height, padding_left + 8f, 20f );
double n = (sections - 1 - i) * Length / (sections - 1) + Min;
g.DrawString( n.ToString( "F1" ), Font_Normal, Brushes.Black, rec, sf_right );
g.DrawLine(
pen_Dash, padding_left - 3, paint_height * i / (sections - 1) + padding_top,
width - padding_right, paint_height * i / (sections - 1) + padding_top );
}
float intervalX = paint_width / array.Length; // 横向间隔
for (int i = 0; i < Peaks.Count; i++)
{
if (array[(int)Peaks[i]] * 200 / Max > 1)
{
g.DrawLine( pen_Dash, Peaks[i] * intervalX + padding_left + 1, padding_top, Peaks[i] * intervalX + padding_left + 1, heigh - padding_down );
RectangleF rec = new RectangleF( Peaks[i] * intervalX + padding_left + 1 - 40, heigh - padding_down + 1, 80f, 20f );
g.DrawString( Peaks[i].ToString( ), Font_Normal, Brushes.DeepPink, rec, sf_center );
}
}
for (int i = 0; i < array.Length; i++)
{
PointF point = new PointF( );
point.X = i * intervalX + padding_left + 1;
point.Y = (float)(paint_height - (array[i] - Min) * paint_height / Length + padding_top);
PointF point2 = new PointF( );
point2.X = i * intervalX + padding_left + 1;
point2.Y = (float)(paint_height - (Min - Min) * paint_height / Length + padding_top);
g.DrawLine( Pens.Tomato, point, point2 );
}
}
else
{
double Max = 100;
double Min = 0;
double Length = Max - Min;
//高400
for (int i = 0; i < sections; i++)
{
RectangleF rec = new RectangleF( -10f, (float)i / (sections - 1) * paint_height, padding_left + 8f, 20f );
double n = (sections - 1 - i) * Length / (sections - 1) + Min;
g.DrawString( n.ToString( "F1" ), Font_Normal, Brushes.Black, rec, sf_right );
g.DrawLine(
pen_Dash, padding_left - 3, paint_height * i / (sections - 1) + padding_top,
width - padding_right, paint_height * i / (sections - 1) + padding_top );
}
}
pen_Dash.Dispose( );
pen_Line.Dispose( );
pen_Fourier.Dispose( );
Font_Normal.Dispose( );
sf_right.Dispose( );
sf_center.Dispose( );
g.Dispose( );
return bitmap;
}
#endif
/// <summary>
/// 快速傅立叶变换
/// </summary>
/// <param name="xreal">实数部分数组长度最好为2的n次方</param>
/// <param name="ximag">虚数部分数组长度最好为2的n次方</param>
/// <returns>变换后的数组值</returns>
public static double[] FFT( double[] xreal, double[] ximag )
{
//n值为2的N次方
int n = 2;
while (n <= xreal.Length)
{
n *= 2;
}
n /= 2;
// 快速傅立叶变换,将复数 x 变换后仍保存在 x 中xreal, ximag 分别是 x 的实部和虚部
double[] wreal = new double[n / 2];
double[] wimag = new double[n / 2];
double treal, timag, ureal, uimag, arg;
int m, k, j, t, index1, index2;
bitrp( xreal, ximag, n );
// 计算 1 的前 n / 2 个 n 次方根的共轭复数 W'j = wreal [j] + i * wimag [j] , j = 0, 1, ... , n / 2 - 1
arg = (-2 * Math.PI / n);
treal = Math.Cos( arg );
timag = Math.Sin( arg );
wreal[0] = 1.0f;
wimag[0] = 0.0f;
for (j = 1; j < n / 2; j++)
{
wreal[j] = wreal[j - 1] * treal - wimag[j - 1] * timag;
wimag[j] = wreal[j - 1] * timag + wimag[j - 1] * treal;
}
for (m = 2; m <= n; m *= 2)
{
for (k = 0; k < n; k += m)
{
for (j = 0; j < m / 2; j++)
{
index1 = k + j;
index2 = index1 + m / 2;
t = n * j / m; // 旋转因子 w 的实部在 wreal [] 中的下标为 t
treal = wreal[t] * xreal[index2] - wimag[t] * ximag[index2];
timag = wreal[t] * ximag[index2] + wimag[t] * xreal[index2];
ureal = xreal[index1];
uimag = ximag[index1];
xreal[index1] = ureal + treal;
ximag[index1] = uimag + timag;
xreal[index2] = ureal - treal;
ximag[index2] = uimag - timag;
}
}
}
double[] result = new double[n];
for (int i = 0; i < result.Length; i++)
{
result[i] = Math.Sqrt( Math.Pow( xreal[i], 2 ) + Math.Pow( ximag[i], 2 ) );
}
return result;
}
/// <summary>
/// 快速傅立叶变换的逆变换
/// </summary>
/// <param name="xreal">实数部分数组长度最好为2的n次方</param>
/// <param name="ximag">虚数部分数组长度最好为2的n次方</param>
/// <returns>2的多少次方</returns>
public static int IFFT( double[] xreal, double[] ximag )
{
//n值为2的N次方
int n = 2;
while (n <= xreal.Length)
{
n *= 2;
}
n /= 2;
// 快速傅立叶逆变换
double[] wreal = new double[n / 2];
double[] wimag = new double[n / 2];
double treal, timag, ureal, uimag, arg;
int m, k, j, t, index1, index2;
bitrp( xreal, ximag, n );
// 计算 1 的前 n / 2 个 n 次方根 Wj = wreal [j] + i * wimag [j] , j = 0, 1, ... , n / 2 - 1
arg = (2 * Math.PI / n);
treal = (Math.Cos( arg ));
timag = (Math.Sin( arg ));
wreal[0] = 1.0f;
wimag[0] = 0.0f;
for (j = 1; j < n / 2; j++)
{
wreal[j] = wreal[j - 1] * treal - wimag[j - 1] * timag;
wimag[j] = wreal[j - 1] * timag + wimag[j - 1] * treal;
}
for (m = 2; m <= n; m *= 2)
{
for (k = 0; k < n; k += m)
{
for (j = 0; j < m / 2; j++)
{
index1 = k + j;
index2 = index1 + m / 2;
t = n * j / m; // 旋转因子 w 的实部在 wreal [] 中的下标为 t
treal = wreal[t] * xreal[index2] - wimag[t] * ximag[index2];
timag = wreal[t] * ximag[index2] + wimag[t] * xreal[index2];
ureal = xreal[index1];
uimag = ximag[index1];
xreal[index1] = ureal + treal;
ximag[index1] = uimag + timag;
xreal[index2] = ureal - treal;
ximag[index2] = uimag - timag;
}
}
}
for (j = 0; j < n; j++)
{
xreal[j] /= n;
ximag[j] /= n;
}
return n;
}
}
}